These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dietary nucleotides protect thymocyte DNA from damage induced by cyclophosphamide in mice. Author: Wang LF, Gong X, Le GW, Shi YH. Journal: J Anim Physiol Anim Nutr (Berl); 2008 Apr; 92(2):211-8. PubMed ID: 18336418. Abstract: The effects of dietary nucleotides on thymocyte DNA damages induced by cyclophosphamide (CP) in mice were examined. First, phase I experiment was conducted to determine the optimal timing of detecting thymocyte DNA damages induced by CP (150 mg/kg body weight) in mice. Thymocyte DNA damages was determined at 6, 12, 18, 24 h by single-cell gel electrophosphoresis assay (comet assay) after intraperitoneal injection of CP. The levels of DNA damage at 6, 12, 18, 24 h were all significantly higher than that of the control group (p < 0.01). The highest level of DNA damage appeared at 18 h and then decreased at 24 h. Therefore, 18 h was selected to determine DNA damages induced by CP in subsequent experiments. In phase II experiment, 30 male KunMing mice were divided into three treatments: negative control (NC), positive control (PC) and nucleotides group (NG). Mice in NC and PC were fed nucleotide-free diet, and mice in NG were fed nucleotide-supplemented diet (supplemented with 0.25% nucleotides, a mixture containing equal amounts of AMP, CMP, GMP and UMP). Mice in PC and NG groups were injected with CP (150 mg/kg body weight) at 21 days. DNA damage in thymocytes was evaluated at 18 h after CP treatment. The results indicate that dietary nucleotides do not affect the weights of the thymus and the spleen, or their organ indices (p > 0.05), but significantly decrease the percentage of comet cells and comet tail sizes (p < 0.01). This study demonstrates that dietary nucleotides could reduce the level of thymocyte DNA damage induced by CP in mice.[Abstract] [Full Text] [Related] [New Search]