These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bifidobacterium microbiota and parameters of immune function in elderly subjects. Author: Ouwehand AC, Bergsma N, Parhiala R, Lahtinen S, Gueimonde M, Finne-Soveri H, Strandberg T, Pitkälä K, Salminen S. Journal: FEMS Immunol Med Microbiol; 2008 Jun; 53(1):18-25. PubMed ID: 18336547. Abstract: Faecal and serum samples were collected over a period of 6 months from 55 institutionalized elderly subjects, who were enrolled in a double-blind placebo-controlled study. Participants were randomized in one of the three treatment groups: intervention (two probiotic Bifidobacterium longum strains: 2C and 46), placebo and commercial control (Bifidobacterium lactis Bb-12). The faecal Bifidobacterium microbiota was characterized by genus and species-specific PCR. Serum levels of the cytokines IL-10, tumor necrosis factor (TNF)-alpha and transforming growth factor (TGF)-beta1 were determined by enzyme-linked immunosorbent assay. Each participant harboured on average approximately three different bifidobacterial species. The most frequently detected species were B. longum, Bifidobacterium adolescentis and Bifidobacterium bifidum. Depending on the treatment, the intervention resulted in specific changes in the levels of certain Bifidobacterium species, and positive correlations were found between the different species. Negative correlations were observed between the levels of Bifidobacterium species and the pro-inflammatory cytokine TNF-alpha and the regulatory cytokine IL-10. The presence of faecal B. longum and Bifidobacterium animalis correlated with reduced serum IL-10. The anti-inflammatory TGF-beta1 levels were increased over time in all three groups, and the presence of Bifidobacterium breve correlated with higher serum TGF-beta1 levels. This indicates that modulation of the faecal Bifidobacterium microbiota may provide a means of influencing inflammatory responses.[Abstract] [Full Text] [Related] [New Search]