These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of the p50 subunit of NF-kappaB in vitamin E-induced changes in mice treated with the peroxisome proliferator, ciprofibrate. Author: Calfee-Mason KG, Lee EY, Spear BT, Glauert HP. Journal: Food Chem Toxicol; 2008 Jun; 46(6):2062-73. PubMed ID: 18336980. Abstract: Peroxisome proliferators (PPs) are a diverse class of chemicals, which cause a dramatic increase in the size and number of hepatic peroxisomes in rodents and eventually lead to the development of hepatic tumors. Nuclear factor-kappaB (NF-kappaB) is a transcription factor activated by reactive oxygen and is involved in cell proliferation and apoptosis. Previously we found that the peroxisome proliferator ciprofibrate (CIP) activates NF-kappaB and that dietary vitamin E decreases CIP-induced NF-kappaB DNA binding. We, therefore, hypothesized that inhibition of NF-kappaB by vitamin E is necessary for effects of vitamin E on CIP-induced cell proliferation and the inhibition of apoptosis by CIP. Sixteen B6129 female mice (p50+/+) and twenty mice deficient in the p50 subunit of NF-kappaB (p50-/-) were fed a purified diet containing 10 or 250mg/kg vitamin E (alpha-tocopherol acetate) for 28 days. At that time, half of the mice were placed on the same diet with 0.01% CIP for 10 days. CIP treatment increased the DNA binding activity of NF-kappaB and cell proliferation, but had no significant effect on apoptosis. Compared to wild-type mice, the p50-/- mice had lower NF-kappaB activation, higher basal levels of cell proliferation and apoptosis, and a lower ratio of reduced glutathione to oxidized glutathione (GSH/GSSG). There was approximately a 60% reduction in cell proliferation in the CIP-treated p50-/- mice fed higher vitamin E in comparison to the p50-/- mice fed lower vitamin E. Dietary vitamin E also inhibited the DNA binding activity of NF-kappaB, increased apoptosis, and increased the GSH/GSSG ratio. This study shows the effects of vitamin E on cell growth parameters do not appear to be solely through decreased NF-kappaB activation, suggesting that vitamin E is acting by other molecular mechanisms.[Abstract] [Full Text] [Related] [New Search]