These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Central pituitary adenylate cyclase 1 receptors modulate nociceptive behaviors in both inflammatory and neuropathic pain states. Author: Davis-Taber R, Baker S, Lehto SG, Zhong C, Surowy CS, Faltynek CR, Scott VE, Honore P. Journal: J Pain; 2008 May; 9(5):449-56. PubMed ID: 18337184. Abstract: UNLABELLED: The pituitary adenylate cyclase-activating polypeptide type 1 receptor (PAC(1)-R) is a member of the 7-transmembrane domain, group 2 G-protein coupled receptor family. PAC(1)-Rs modulate neurotransmission and neurotrophic actions and have been implicated in both pronociception and antinociception. To better understand the role of PAC(1)-Rs in pain, PACAP 6-38, a PAC(1)-R antagonist, was evaluated in several inflammatory and neuropathic pain models after intrathecal (i.t.) administration. PACAP 6-38 potently reduced mechanical allodynia in a neuropathic spinal nerve ligation model (77% +/- 15% maximal effect at 12 nmol, P < .01) and was also effective in reducing thermal hyperalgesia in the carrageenan model of inflammatory pain (89% +/- 17% maximal effect at 12 nmol, P < .01). Although nociceptive responses were also attenuated with PACAP 6-38 in a dose-dependent manner in models of chronic inflammatory and persistent pain, no effects on motor performance were observed at analgesic doses. Taken together, these data demonstrate that blockade of the PAC(1)-R/PACAP complex by PACAP 6-38 can effectively attenuate thermal hyperalgesia and mechanical allodynia associated with inflammatory and neuropathic pain states. These results further emphasize that at the level of the spinal cord, PAC(1)-R activation is pronociceptive. PERSPECTIVE: This article presents the analgesic profile generated by the blockade, at the spinal cord level, of the PAC-1 receptor by a potent peptide antagonist. This comprehensive data set demonstrates that if small molecule PAC-1 receptor antagonists could be identified, they would potentially produce broad-spectrum analgesia in both inflammatory and neuropathic pain states.[Abstract] [Full Text] [Related] [New Search]