These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of perfusion-weighted imaging at 3 Tesla in the assessment of malignancy of cerebral gliomas. Author: Di Costanzo A, Pollice S, Trojsi F, Giannatempo GM, Popolizio T, Canalis L, Armillotta M, Maggialetti A, Carriero A, Tedeschi G, Scarabino T. Journal: Radiol Med; 2008 Feb; 113(1):134-43. PubMed ID: 18338133. Abstract: PURPOSE: This study was performed to clarify the role of perfusion-weighted imaging (PWI) at 3 Tesla in the characterisation of haemodynamic heterogeneity within gliomas and surrounding tissues and in the differentiation of high-grade from low-grade gliomas. MATERIALS AND METHODS: We examined 36 patients with histologically verified gliomas (25 with high-grade and 11 with low-grade gliomas). PWI was performed by first-pass gadopentetate dimeglumine T2*-weighted echo-planar images, and cerebral blood volume (CBV) maps were computed with a nondiffusible tracer model. Relative CBV (rCBV) was calculated by dividing CBV in pathological areas by that in contralateral white matter. RESULTS: In high-grade gliomas, rCBV were markedly increased in mass [mean+/-standard deviation (SD), 4.3+/-1.2] and margins (4.0+/-1.1) and reduced in necrotic areas (0.3+/-0.3). Oedematous-appearing areas were divided in two groups according to signal intensity on T2-weighted images: tumour with lower (nearly isointense to grey matter) and oedema with higher (scarcely isointense to cerebrospinal fluid) signal intensity. Tumour showed significantly higher rCBV than did oedema (1.8+/-0.5 vs. 0.5+/-0.2; p<0.001) areas. In low-grade gliomas, mass (2.0+/-1.5) and margin (2.2+/-1.2) rCBV were significantly lower than in high-grade gliomas (p<0.001). CONCLUSIONS: Three-Tesla PWI helps to distinguish necrosis from tumour mass, infiltrating tumour from oedema and high-grade from low-grade gliomas. It enhances the magnetic resonance (MR) assessment of cerebral gliomas and provides useful information for planning surgical and radiation treatment.[Abstract] [Full Text] [Related] [New Search]