These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lateral pressure dependence of the phospholipid transmembrane diffusion rate in planar-supported lipid bilayers. Author: Anglin TC, Conboy JC. Journal: Biophys J; 2008 Jul; 95(1):186-93. PubMed ID: 18339755. Abstract: The dependence of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) flip-flop kinetics on the lateral membrane pressure in a phospholipid bilayer was investigated by sum-frequency vibrational spectroscopy. Planar-supported lipid bilayers were prepared on fused silica supports using the Langmuir-Blodgett/Langmuir-Schaeffer technique, which allows precise control over the lateral surface pressure and packing density of the membrane. The lipid bilayer deposition pressure was varied from 28 to 42 mN/m. The kinetics of lipid flip-flop in these membranes was measured by sum-frequency vibrational spectroscopy at 37 degrees C. An order-of-magnitude difference in the rate constant for lipid translocation (10.9 x 10(-4) s(-1) to 1.03 x 10(-4) s(-1)) was measured for membranes prepared at 28 mN/m and 42 mN/m, respectively. This change in rate results from only a 7.4% change in the packing density of the lipids in the bilayer. From the observed kinetics, the area of activation for native phospholipid flip-flop in a protein-free DPPC planar-supported lipid bilayer was determined to be 73 +/- 12 A(2)/molecule at 37 degrees C. Significance of the observed activation area and potential future applications of the technique to the study of phospholipid flip-flop are discussed.[Abstract] [Full Text] [Related] [New Search]