These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proton-coupled hole transfer in X-irradiated doped crystalline cytosine.H2O.
    Author: Krivokapić A, Herak JN, Sagstuen E.
    Journal: J Phys Chem A; 2008 Apr 24; 112(16):3597-606. PubMed ID: 18341308.
    Abstract:
    Following exposure to X-irradiation at low temperatures, the main reactions taking place in single crystals of cytosine monohydrate doped with minute amounts of 2-thiocytosine are hole transfer (HT) from the electron-loss centers to the dopant and recombination of oxidation and reduction products, assumedly by electron transfer. A huge deuterium kinetic isotope effect (KIE; >102-103) at 100 K, together with the kinetic curves obtained and density functional theory (DFT) calculations of equilibrium energy changes, indicates that these reactions proceed through a concerted proton-coupled electron/hole transfer where the proton transfer occurs between hydrogen-bonded cytosine molecules. The temperature dependence of these reaction rates between 10 and 150 K in normal and partially deuterated samples was investigated by monitoring the growth and decay of the various radical species over time using electron paramagnetic resonance (EPR) spectroscopy. By assuming a random distribution of the hole donors and acceptors in the crystals, the data are consistent with an exponential distance-dependent rate, giving a distance decay constant (beta) around 1 A-1 for the HT, which indicates that a long-range single-step superexchange mechanism mediates the charge transfer. The reactions undergo a transition from a slow, weakly temperature-dependent rate to an Arrhenius-type rate at 40-50 K, presumably being activated by excitation of low-frequency intermolecular vibrations that couple to the process. Below this transition temperature, the transfer probability might be dominated by temperature-independent nuclear tunneling. A similar beta value in both temperature regions suggests that hopping is not activated.
    [Abstract] [Full Text] [Related] [New Search]