These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Release of lysozyme from the branched polyelectrolyte-lysozyme complexation.
    Author: Ni R, Cao D, Wang W.
    Journal: J Phys Chem B; 2008 Apr 10; 112(14):4393-400. PubMed ID: 18341317.
    Abstract:
    On the basis of the discretely charged sphere model of lysozyme, the release behavior of lysozyme from the branched polyelectrolyte-lysozyme complexation is investigated by adding salt and changing the pH values of the solution. It is found that, with the increase of the salt ionic strength of the solution, the lysozymes are gradually released from the oppositely charged polyelectrolyte as a result of the screening of electrostatic attraction between the two ionic species by adding the salt. Interestingly, there exists a critical salt ionic strength at which all proteins are released from the branched polyelectrolyte, and the polyelectrolyte-protein complexation is broken completely. Beyond the critical value, the increase of the salt ionic strength causes self-association of the proteins released from the branched polyelectrolyte-protein complexation. The self-association of the protein is detrimental in biological systems. By calculating the second virial coefficient, we found that the optimal salt content for the dispersion of proteins coincides with the critical ionic strength, because the second virial coefficient reaches its maximum at the critical ionic strength. Similarly, increasing the pH value of the solution can also release the lysozymes from the polyelectrolyte, because the increase of pH value of the solution changes the charge distribution and net charge of the lysozyme, weakens the attraction between lysozymes mediated by polyelectrolyte, and finally leads to the dissolution of the complexation of branched polyelectrolyte with lysozymes in strong alkaline solution. In addition, by exploring the effect of architecture of the polyelectrolyte on the release behavior of proteins, we found that it is more difficult to release proteins from the branched polyelectrolyte than from the linear polyelectrolyte.
    [Abstract] [Full Text] [Related] [New Search]