These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: On-chip isoelectric focusing using photopolymerized immobilized pH gradients.
    Author: Sommer GJ, Singh AK, Hatch AV.
    Journal: Anal Chem; 2008 May 01; 80(9):3327-33. PubMed ID: 18341355.
    Abstract:
    We present the first successful adaptation of immobilized pH gradients (IPGs) to the microscale (muIPGs) using a new method for generating precisely defined polymer gradients on-chip. Gradients of monomer were established via diffusion along 6 mm flow-restricted channel segments. Precise control over boundary conditions and the resulting gradient is achieved by continuous flow of stock solutions through side channels flanking the gradient segment. Once the desired gradient is established, it is immobilized via photopolymerization. Precise gradient formation was verified with spatial and temporal detection of a fluorescent dye added to one of the flanking streams. Rapid (<20 min) isoelectric focusing of several fluorescent pI markers and proteins is demonstrated across pH 3.8-7.0 muIPGs using both denaturing and nondenaturing conditions, without the addition of carrier ampholytes. The muIPG format yields improved stability and comparable resolution to prominent on-chip IEF techniques. In addition to rapid, high-resolution separations, the reported muIPG format is amenable to multiplexed and multidimensional analysis via custom gradients as well as integration with other on-chip separation methods.
    [Abstract] [Full Text] [Related] [New Search]