These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The integrity of the sarcin/ricin domain of 23 S ribosomal RNA is not required for elongation factor-independent peptide synthesis. Author: Chan YL, Wool IG. Journal: J Mol Biol; 2008 Apr 18; 378(1):12-9. PubMed ID: 18342885. Abstract: The elongation stage of protein synthesis consists of repeated cycles of the binding of aminoacyl-tRNA, peptide bond formation, and translocation. The process is normally catalyzed by the elongation factors Tu and G; however, the reactions can proceed, at least in prescribed and limited circumstance, in the absence of the elongation factors, a finding that strongly implies that the chemistry of protein synthesis is inherent in the ribosome. The sarcin/ricin domain in 23 S rRNA, the site of inactivation of ribosomes by ribotoxins, is where the elongation factors bind. The question that arises is whether the sarcin/ricin domain is necessary for factor-independent peptide synthesis. The answer is that it is not. The disruption of the sarcin/ricin domain by covalent modification with either sarcin or pokeweed antiviral protein did not affect factor-independent peptide synthesis; nor did lethal mutations of nucleotides that abolish the binding of elongation factors. The results imply that the sole function of the sarcin/ricin domain is to provide a binding site for the elongation factors and, hence, to facilitate the elongation reactions. The results also raise the possibility of the co-evolution of the sarcin/ricin domain and the elongation factors.[Abstract] [Full Text] [Related] [New Search]