These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel hydantoinase process using recombinant Escherichia coli cells with dihydropyrimidinase and L-N-carbamoylase activities as biocatalyst for the production of L-homophenylalanine.
    Author: Kao CH, Lo HH, Hsu SK, Hsu WH.
    Journal: J Biotechnol; 2008 Apr 30; 134(3-4):231-9. PubMed ID: 18342972.
    Abstract:
    A dihydropyrimidinase gene (pydB) was cloned from the moderate thermophilic Brevibacillus agri NCHU1002 and expressed in Escherichia coli. The purified dihydropyrimidinase exhibited strict d-enantioselectivity for D,L-p-hydroxyphenylhydantoin and D,L-5-[2-(methylthio)ethyl]hydantoin, and non-enantiospecificity for D,L-homophenylalanylhydantoin (D,L-HPAH). The hydrolytic activity of PydB was enhanced notably by Mn2+, with a maximal activity at 60 degrees C and pH 8.0. This enzyme was completely thermostable at 50 degrees C for 20 days. A whole cell biocatalyst for the production of L-homophenylalanine (L-HPA) from D,L-HPAH by coexpression of the pydB gene and a thermostable L-N-carbamoylase gene from Bacillus kaustophilus CCRC11223 in E. coli JM109 was developed. The expression levels of dihydropyrimidinase and L-N-carbamoylase in the recombinant E. coli cells were estimated to be about 20% of the respective total soluble proteins. When 1% (w/v) isopropyl-beta-D-thiogalactopyranoside-induced cells were used as biocatalysts, a conversion yield of 49% for L-HPA with more than 99% ee could be reached in 16 h at pH 7.0 from 10mM D,L-HPAH. The cells can be reused for at least eight cycles at a conversion yield of more than 43%. Our results revealed that coexpression of pydB and lnc in E. coli might be a potential biocatalyst for L-HPA production.
    [Abstract] [Full Text] [Related] [New Search]