These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sensitivity to stimulus onset and offset in the S-cone pathway.
    Author: Racheva K, Vassilev A.
    Journal: Vision Res; 2008 Apr; 48(9):1125-36. PubMed ID: 18343479.
    Abstract:
    Previous work [Vassilev, capital A, Cyrillic., Mihaylova, M., Racheva, K., Zlatkova, M., & Anderson, R. S. (2003). Spatial summation of S-cone ON and OFF signals: Effects of retinal eccentricity. Vision Research, 43, 2875-2884; Vassilev, A., Zlatkova, M., Krumov, A., & Schaumberger, M. (2000). Spatial summation of blue-on yellow light increments and decrements in human vision. Vision Research, 40, 989-1000] has shown that spatial summation of brief S-cone selective stimuli depends on their polarity, increments or decrements, suggesting involvement of S-ON and OFF pathways, respectively. This assumption was tested in two experiments using a modified two-color threshold method of Stiles to selectively stimulate the S-cones. In the first experiment we measured detection threshold for small 100ms S-cone selective increments and decrements presented within three types of temporal window, rectangular, ramp onset/rapid offset and rapid onset/ramp offset. The ramp-onset threshold was higher than the ramp-offset threshold regardless of stimulus sign. In the second experiment we measured reaction time (RT) with near-threshold stimuli spatially coincident with the background to avoid spatial contrast. RT distribution for S-cone selective 500ms increments and decrements was unimodal and followed stimulus onset. An increase of stimulus duration to 1000 and 2000ms resulted in the appearance of responses following stimulus offset. The results suggest that, for brief S-cone selective increments or decrements, the human visual system is more sensitive to stimulus onset than to stimulus offset. Only for longer stimuli is the offset important, probably due to slow adaptation at a postreceptoral level.
    [Abstract] [Full Text] [Related] [New Search]