These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet.
    Author: Giraldo LA, Tejido ML, Ranilla MJ, Ramos S, Carro MD.
    Journal: J Anim Sci; 2008 Jul; 86(7):1617-23. PubMed ID: 18344313.
    Abstract:
    Six rumen-fistulated Merino sheep were used in a crossover design experiment to evaluate the effects of an exogenous fibrolytic enzyme preparation (12 g/d; ENZ), delivered directly into the rumen, on diet digestibility, ruminal fermentation, and microbial protein synthesis. The enzyme contained endoglucanase and xylanase activities. Sheep were fed a mixed grass hay:concentrate (70:30; DM basis) diet at a daily rate of 46.1 g/kg of BW(0.75). Samples of grass hay were incubated in situ in the rumen of each sheep to measure DM and NDF degradation. The supplementation with ENZ did not affect diet digestibility (P = 0.30 to 0.66), urinary excretion of purine derivatives (P = 0.34), ruminal pH (P = 0.46), or concentrations of NH(3)-N (P = 0.69) and total VFA (P = 0.97). In contrast, molar proportion of propionate were greater (P = 0.001) and acetate:propionate ratio was lower (P < 0.001) in ENZ-supplemented sheep. In addition, ENZ supplementation tended to increase (P = 0.06) numbers of cellulolytic bacteria at 4 h after feeding. Both the ruminally insoluble potentially degradable fraction of grass hay DM and its fractional rate of degradation were increased (P = 0.002 and 0.05, respectively) by ENZ treatment. Supplementation with ENZ also increased (P = 0.01 to 0.02) effective and potential degradability of grass hay DM and NDF. Ruminal fluid endoglucanase and xylanase activities were greater (P < 0.001 and 0.03, respectively) in ENZ-supplemented sheep than in control animals. It was found that ENZ supplementation did not affect either exoglucanase (P = 0.12) or amylase (P = 0.83) activity. The results indicate that supplementing ENZ directly into the rumen increased the fibrolytic activity and stimulated the growth of cellulolytic bacteria without a prefeeding feed-enzyme interaction.
    [Abstract] [Full Text] [Related] [New Search]