These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Author: Weinberger M, Hamani C, Hutchison WD, Moro E, Lozano AM, Dostrovsky JO. Journal: Exp Brain Res; 2008 Jun; 188(2):165-74. PubMed ID: 18347783. Abstract: The pedunculopontine nucleus (PPN) lies within the brainstem reticular formation and is involved in the motor control of gait and posture. Interest has focused recently on the PPN as a target for implantation of chronic deep brain stimulation (DBS) electrodes for Parkinson's disease (PD) and progressive supranuclear palsy (PSP) therapy. The aim of this study was to examine the neurophysiology of the human PPN region and to identify neurophysiological landmarks that may aid the proper placement of DBS electrodes in the nucleus for the treatment of PD and PSP. Neuronal firing and local field potentials were recorded simultaneously from two independently driven microelectrodes during stereotactic neurosurgery for implantation of a unilateral DBS electrode in the PPN in five PD patients and two PSP patients. Within the PPN region, the majority (57%) of the neurons fired randomly while about 21% of the neurons exhibited 'bursty' firing. In addition, 21% of the neurons had a long action potential duration and significantly lower firing rate suggesting they were cholinergic neurons. A change in firing rate produced by passive and/or active contralateral limb movement was observed in 38% of the neurons that were tested in the PPN region. Interestingly, oscillatory local field potential activity in the beta frequency range ( approximately 25 Hz) was also observed in the PPN region. These electrophysiological characteristics of the PPN region provide further support for the proposed role of this region in motor control. It remains to be seen to what extent the physiological characteristics of the neurons and the stimulation-evoked effects will permit reliable identification of PPN and determination of the optimal target for DBS therapy.[Abstract] [Full Text] [Related] [New Search]