These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A thermal decarbonylation of penam beta-lactams. Author: Wiitala KW, Tian Z, Cramer CJ, Hoye TR. Journal: J Org Chem; 2008 Apr 18; 73(8):3024-31. PubMed ID: 18348573. Abstract: Penam acids 6-8 [i.e., (2S,5R,6R)-, (2S,5S,6R)-, and (2S,5R,6S)-isomers of 6-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid] were prepared by deesterification of the corresponding methyl esters 2-4. The same methodology applied to ester 1 did not lead to the (2S,5S,6S)-isomer 5 but rather a 72% yield of the thiazoline derivative 9. High-resolution mass spectrometry analysis of the reaction headspace gases indicated that a stoichiometric amount of carbon monoxide is produced during the deesterification of 1. A mechanism for this decarbonylation reaction is proposed. This appears to represent a new type of fragmentation reaction for a penam carboxylic acid. The free energies of various reaction species along viable decarbonylation reaction coordinates for acids 5 and 7 were computed by using the density functional theory method IEFPCM/M06/6-31+G(d). Anionic and zwitterionic (neutral) variants of the proposed mechanism were considered, but each produced computed activation free energies deemed to be too high (>45 kcal/mol) to be experimentally relevant. The computed activation free energies for the protonated (cationic) variant of the mechanism were 17.3 kcal/mol for 7 vs 8.8 kcal/mol for 5. The value of this difference in energies of activation (DeltaDeltaG++) is quite consistent with experimental observations and supports the proposed mechanism. For a portion of the computed reaction coordinate that involves ring opening of the lactam ring by an internal carboxylic acid group to form a cyclic anhydride, the expected tetrahedral intermediate was circumvented by a direct (concerted) and facile N- to O-acyl migration event. Additional thermal gas-phase reaction products produced during gas chromatographic analysis of the penams 1-8 were characterized with high-resolution mass spectrometry, and possible mechanisms for their formation are presented.[Abstract] [Full Text] [Related] [New Search]