These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of fescue type and sampling date on the nitrogen disappearance kinetics of autumn-stockpiled tall fescue. Author: Flores R, Coblentz WK, Ogden RK, Coffey KP, Looper ML, West CP, Rosenkrans CF. Journal: J Dairy Sci; 2008 Apr; 91(4):1597-606. PubMed ID: 18349252. Abstract: Two tall fescue [Lolium arundinaceum (Schreb.) Darbysh] forages, one an experimental host plant/endophyte association containing a novel endophyte that produces low or nil concentrations of ergot alkaloids (HM4) and the other a typical association of Kentucky 31 tall fescue and the wild-type endophyte (Neotyphodium coenophialum; E+), were autumn-stockpiled following late-summer clipping and fertilization with 56 kg/ha of N to assess N partitioning and ruminal disappearance kinetics of N for these autumn-stockpiled tall fescue forages. Beginning on December 4, 2003, sixteen 361 +/- 56.4-kg replacement dairy heifers were stratified by weight and breeding, and assigned to one of four 1.6-ha pastures (2 each of E+ and HM4) that were strip-grazed throughout the winter. Pastures were sampled before grazing was initiated (December 4), each time heifers were allowed access to a fresh pasture strip (December 26, January 15, and February 4), and when the study was terminated (February 26). Generally, fescue type and the fescue type x sampling date interaction exhibited only minor effects on total forage N, or partitioning of N within the cell solubles or the cell wall. For pregrazed forages, concentrations of N and N partitioned within the cell solubles both declined in a strongly linear relationship with sampling dates. In contrast, concentrations of cell-wall-associated N changed in erratic and often higher-ordered relationships with time, but the magnitude of these responses generally was limited. Unlike the partitioning of N within cell-wall and cell-soluble fractions, kinetic characteristics of ruminal N disappearance frequently exhibited interactions of fescue type and sampling date. For pregrazed forages, these included interactions for all response variables, and for postgrazed forages, fractions B and C, as well as rumen degradable protein. Ruminal disappearance rate for pregrazed E+ and HM4 exhibited quadratic (range = 0.057 to 0.082/h) and cubic (range = 0.057 to 0.075/h) relationships with time, respectively. For postgrazed E+ and HM4 forages, ruminal disappearance rate was unaffected (mean = 0.066/h) or only tended to be affected by sampling date (mean = 0.065/h), respectively. Concentrations of rumen degradable protein exhibited various curvilinear relationships with sampling dates, but disappearance was consistently extensive, and the overall range was relatively narrow (71.3 to 78.9% of N). These findings suggest that ruminal disappearance of N for autumn-stockpiled tall fescue forages remains extensive throughout the winter months and is only affected minimally by fescue type, sampling date, and grazing status.[Abstract] [Full Text] [Related] [New Search]