These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cu2+/+ cation coordination to adenine--thymine base pair. Effects on intermolecular proton-transfer processes.
    Author: Noguera M, Bertran J, Sodupe M.
    Journal: J Phys Chem B; 2008 Apr 17; 112(15):4817-25. PubMed ID: 18358032.
    Abstract:
    Intermolecular proton-transfer processes in the Watson & Crick adenine-thymine Cu+ and Cu2+ cationized base pairs have been studied using the density functional theory (DFT) methods. Cationized systems subject to study are those resulting from cation coordination to the main basic sites of the base pair, N7 and N3 of adenine and O2 of thymine. For Cu+ coordinated to N7 or N3 of adenine, only the double proton-transferred product is found to be stable, similarly to the neutral system. However, when Cu+ interacts with thymine, through the O2 carbonyl atom, the single proton transfer from thymine to adenine becomes thermodynamically spontaneous, and thus rare forms of the DNA bases may spontaneously appear. For Cu2+ cation, important effects on proton-transfer processes appear due to oxidation of the base pair, which stabilizes the different single proton-transfer products. Results for hydrated systems show that the presence of the water molecules interacting with the metal cation (and their mode of coordination) can strongly influence the ability of Cu2+ to induce oxidation on the base pair.
    [Abstract] [Full Text] [Related] [New Search]