These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quercetin decreases intracellular GSH content and potentiates the apoptotic action of the antileukemic drug arsenic trioxide in human leukemia cell lines. Author: Ramos AM, Aller P. Journal: Biochem Pharmacol; 2008 May 15; 75(10):1912-23. PubMed ID: 18359480. Abstract: Arsenic trioxide (ATO) is an effective therapeutic agent for the treatment of acute promyelocytic leukemia, but successful application of this agent may occasionally require the use of sensitizing strategies. The present work demonstrates that the flavonoids quercetin and chrysin cooperate with ATO to induce apoptosis in U937 promonocytes and other human leukemia cell lines (THP-1, HL-60). Co-treatment with ATO plus quercetin caused mitochondrial transmembrane potential dissipation, stimulated the mitochondrial apoptotic pathway, as indicated by cytochrome c and Omi/Htra2 release, XIAP and Bcl-X(L) down-regulation, and Bax activation, and caused caspase-8/Bid activation. Bcl-2 over-expression abrogated cytochrome c release and apoptosis, and also blocked caspase-8 activation. Quercetin and chrysin, alone or with ATO, decreased Akt phosphorylation as well as intracellular GSH content. GSH depletion was regulated at the level of L-buthionine-(S,R)-sulfoximine (BSO)-sensitive enzyme activity, and N-acetyl-L-cysteine failed both to restore GSH content and to prevent apoptosis. Treatment with BSO caused GSH depletion and potentiated ATO-provoked apoptosis, but did not affect apoptosis induction by ara-C and cisplatin. As an exception, ATO plus quercetin failed to elicit Akt de-phosphorylation and GSH depletion in NB4 acute promyelocytic leukemia cells, and correspondingly exhibited low cooperative effect in inducing apoptosis in this cell line. It is concluded that GSH depletion explains at least in part the selective potentiation of ATO toxicity by quercetin, and that this flavonoid might be used to increase the clinical efficacy of the antileukemic drug.[Abstract] [Full Text] [Related] [New Search]