These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evolutionary patterns of MHC class II B in owls and their implications for the understanding of avian MHC evolution.
    Author: Burri R, Hirzel HN, Salamin N, Roulin A, Fumagalli L.
    Journal: Mol Biol Evol; 2008 Jun; 25(6):1180-91. PubMed ID: 18359775.
    Abstract:
    Owing to its special mode of evolution and central role in the adaptive immune system, the major histocompatibility complex (MHC) has become the focus of diverse disciplines such as immunology, evolutionary ecology, and molecular evolution. MHC evolution has been studied extensively in diverse vertebrate lineages over the last few decades, and it has been suggested that birds differ from the established mammalian norm. Mammalian MHC genes evolve independently, and duplication history (i.e., orthology) can usually be traced back within lineages. In birds, this has been observed in only 3 pairs of closely related species. Here we report strong evidence for the persistence of orthology of MHC genes throughout an entire avian order. Phylogenetic reconstructions of MHC class II B genes in 14 species of owls trace back orthology over tens of thousands of years in exon 3. Moreover, exon 2 sequences from several species show closer relationships than sequences within species, resembling transspecies evolution typically observed in mammals. Thus, although previous studies suggested that long-term evolutionary dynamics of the avian MHC was characterized by high rates of concerted evolution, resulting in rapid masking of orthology, our results question the generality of this conclusion. The owl MHC thus opens new perspectives for a more comprehensive understanding of avian MHC evolution.
    [Abstract] [Full Text] [Related] [New Search]