These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Collateral effects of antibiotics: carbadox and metronidazole induce VSH-1 and facilitate gene transfer among Brachyspira hyodysenteriae strains. Author: Stanton TB, Humphrey SB, Sharma VK, Zuerner RL. Journal: Appl Environ Microbiol; 2008 May; 74(10):2950-6. PubMed ID: 18359835. Abstract: Brachyspira hyodysenteriae is an anaerobic spirochete and the etiologic agent of swine dysentery. The genome of this spirochete contains a mitomycin C-inducible, prophage-like gene transfer agent designated VSH-1. VSH-1 particles package random 7.5-kb fragments of the B. hyodysenteriae genome and transfer genes between B. hyodysenteriae cells. The chemicals and conditions inducing VSH-1 production are largely unknown. Antibiotics used in swine management and stressors inducing traditional prophages might induce VSH-1 and thereby stimulate lateral gene transfer between B. hyodysenteriae cells. In these studies, VSH-1 induction was initially detected by a quantitative real-time reverse transcriptase PCR assay evaluating increased transcription of hvp38 (VSH-1 head protein gene). VSH-1 induction was confirmed by detecting VSH-1-associated 7.5-kb DNA and VSH-1 particles in B. hyodysenteriae cultures. Nine antibiotics (chlortetracycline, lincomycin, tylosin, tiamulin, virginiamycin, ampicillin, ceftriaxone, vancomycin, and florfenicol) at concentrations affecting B. hyodysenteriae growth did not induce VSH-1 production. By contrast, VSH-1 was detected in B. hyodysenteriae cultures treated with mitomycin C (10 microg/ml), carbadox (0.5 microg/ml), metronidazole (0.5 microg/ml), and H(2)O(2) (300 microM). Carbadox- and metronidazole-induced VSH-1 particles transmitted tylosin and chloramphenicol resistance determinants between B. hyodysenteriae strains. The results of these studies suggest that certain antibiotics may induce the production of prophage or prophage-like elements by intestinal bacteria and thereby impact intestinal microbial ecology.[Abstract] [Full Text] [Related] [New Search]