These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic association study of synphilin-1 in idiopathic Parkinson's disease.
    Author: Myhre R, Klungland H, Farrer MJ, Aasly JO.
    Journal: BMC Med Genet; 2008 Mar 21; 9():19. PubMed ID: 18366718.
    Abstract:
    BACKGROUND: Post-mortem Lewy body and Lewy neuritic inclusions are a defining feature of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). With the discovery of missense and multiplication mutations in the alpha-synuclein gene (SNCA) in familial parkinsonism, Lewy inclusions were found to stain intensely with antibodies raised against the protein. Yeast-two-hybrid studies identified synphilin-1 as an interacting partner of alpha-synuclein, and both proteins show co-immunolocalization in a subset of Lewy body inclusions. In the present study, we have investigated whether common variability in synphilin-1, including coding substitutions are genetically associated with disease pathogenesis. METHODS: We screened the synphilin-1 gene for 11 single nucleotide polymorphisms (SNPs) in 300 affected subjects with idiopathic Parkinson's disease and 412 healthy controls. Six of these were rare variants including five previously identified amino acid substitutions that were chosen in a direct approach for association of rare disease causing mutations. An additional five highly heterozygous SNPs were chosen for an indirect association approach including haplotype analysis, based on the assumption that any disease causing mutations might be in linkage disequilibrium with the SNPs selected. We also genotyped a microsatellite marker (D5S2950) within intron 6 of the gene and five additional microsatellites clustered downstream of the 5p23.1-23.3 synphilin-1 locus. Genome-wide linkage analysis, in a number of independent studies, has previously highlighted suggestive linkage to PD in this region of chromosome 5. RESULTS: Screening of previously known amino acid substitutions in the synphilin-1 gene, identified the C1861>T (R621C) substitution in four patients (chromosomes n = 600) and 10 control subjects (chromosomes n = 824), whereas the G2125>C (E706Q) substitution was detected in one patient and four control subject, suggesting both these substitutions are not associated with susceptibility to PD. Heterozygous non-synonymous T131>C (V44A) and synonymous C636>T (P212P) amino acid substitutions were each detected in only one patient with PD. Heterozygous C1134>T (L378L) synonymous substitutions were found in two patients with PD and one control subject. D5S2010 the most distal telomeric microsatellite marker genotyped,15.3 Mb from synphilin-1, was genetically associated with PD (p = 0.006, 27df) independently adjusted for multiple testing according to its high amount of alleles but not the total number of other markers investigated. Other flanking and intronic SNP and microsatellite markers showed no evidence for genetic association with disease. CONCLUSION: In this study rare synphilin-1 SNPs were assessed in a direct association approach to identify amino acid substitutions that might confer risk of PD in a homozygous or compound heterozygous state. We found none of these rare variations were associated with disease. In contrast to prior studies the frequency of the R621C substitution was not significantly different between PD and control subjects, neither were the V44A or E706Q substitutions. Similarly, our indirect study of more heterozygous SNPs, including both single marker and haplotype analyses, showed no significant association to PD. However, marginal association of microsatellite alleles with idiopathic PD, within the chromosome 5q21 region, indicates further studies are warranted.
    [Abstract] [Full Text] [Related] [New Search]