These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the interacting domain of the HIV-1 fusion peptide with the transmembrane domain of the T-cell receptor.
    Author: Cohen T, Pevsner-Fischer M, Cohen N, Cohen IR, Shai Y.
    Journal: Biochemistry; 2008 Apr 22; 47(16):4826-33. PubMed ID: 18376816.
    Abstract:
    HIV infection is initiated by the fusion of the viral membrane with the target T-cell membrane. The HIV envelope glycoprotein, gp41, contains a fusion peptide (FP) in the N terminus that functions together with other gp41 domains to fuse the virion with the host cell membrane. We recently reported that FP co-localizes with CD4 and T-cell receptor (TCR) molecules, co-precipitates with TCR, and inhibits antigen-specific T-cell proliferation and pro-inflammatory cytokine secretion. Molecular dynamic simulation implicated an interaction between an alpha-helical transmembrane domain (TM) of the TCRalpha chain (designated CP) and the beta-sheet 5-13 region of the 16 N-terminal amino acids of FP (FP(1-16)). To correlate between the theoretical prediction and experimental data, we synthesized a series of mutants derived from the interacting motif GALFLGFLG stretch (FP(5-13)) and investigated them structurally and functionally. The data reveal a direct correlation between the beta-sheet structure of FP(5-13) and its mutants and their ability to interact with CP and induce immunosuppressive activity; the phenylalanines play an important role. Furthermore, studies with fluorescently labeled peptides revealed that this interaction leads to penetration of the N terminus of FP and its active analogues into the hydrophobic core of the membrane. A detailed understanding of the molecular interactions mediating the immunosuppressive activity of the FP(5-13) motif should facilitate evaluating its contribution to HIV pathology and its exploitation as an immunotherapeutic tool.
    [Abstract] [Full Text] [Related] [New Search]