These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhancement of endocannabinoid neurotransmission through CB1 cannabinoid receptors counteracts the reinforcing and psychostimulant effects of cocaine.
    Author: Vlachou S, Stamatopoulou F, Nomikos GG, Panagis G.
    Journal: Int J Neuropsychopharmacol; 2008 Nov; 11(7):905-23. PubMed ID: 18377702.
    Abstract:
    Cannabinoids, in contrast to typical drugs of abuse, have been shown to exert complex effects on behavioural reinforcement and psychomotor function. We have shown that cannabinoid agonists lack reinforcing/rewarding properties in the intracranial self-stimulation (ICSS) paradigm and that the CB1 receptor (CB1R) agonist WIN55,212-2 attenuates the reward-facilitating actions of cocaine. We sought to determine the effects of the endocannabinoid neurotransmission enhancer AM-404 (1, 3, 10, 30 mg/kg) on the changes in ICSS threshold and locomotion elicited by cocaine and extend the study of the effects of WIN55,212-2 (0.3, 1, 3 mg/kg) on cocaine-induced hyperlocomotion. AM-404 did not exhibit reward-facilitating properties, and actually increased self-stimulation threshold at the highest dose. Cocaine significantly reduced self-stimulation threshold, without altering maximal rates of responding. AM-404 (10 mg/kg) attenuated this action of cocaine, an effect which was reversed by pretreatment with the selective CB1R antagonist SR141716A. WIN55,212-2 decreased locomotion at the two highest doses, an effect that was blocked by SR141716A; AM-404 had no effect on locomotion. Cocaine caused a significant, dose-dependent increase in locomotion, which was reduced by WIN55,212-2 and AM-404. SR141716A blocked the effects of WIN55,212-2 and AM-404 on cocaine-induced hyperlocomotion. SR141716A alone had no effect on ICSS threshold or locomotion. These results indicate that cannabinoids may interfere with brain reward systems responsible for the expression of acute reinforcing/rewarding properties of cocaine, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for the treatment of psychostimulant addiction and pathological states associated with psychomotor overexcitability.
    [Abstract] [Full Text] [Related] [New Search]