These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel truncated TGF-beta receptor II downregulates collagen synthesis and TGF-beta I secretion of keloid fibroblasts.
    Author: Chu Y, Guo F, Li Y, Li X, Zhou T, Guo Y.
    Journal: Connect Tissue Res; 2008; 49(2):92-8. PubMed ID: 18382895.
    Abstract:
    Hypertrophic scars and keloid are dermal proliferative disorders in wound healing. Transforming growth factor beta (TGF-beta) has been implicated in scar formation through the activation of fibroblasts and the acceleration of collagen deposition. Our study aimed to design a novel truncated (27-123 residues) type II TGF-beta receptor (tTGFbetaRII) and to determine its effects on the proliferation of keloid fibroblasts and the collagen synthesis as well as TGF-beta I expression of the cells. The coding sequences of TGF-beta I and tTGFbetaRII were amplified using RT-PCR and then cloned into pGBKT7 and pGADT7 vectors. A yeast two-hybrid experiment and a glutathione S-transferase (GST)-pull down assay were performed to verify the affinity of tTGFbetaRII to TGF-beta I. Our results indicated that treatment with tTGFbetaRII inhibited the growth of keloid fibroblasts and suppressed the synthesis of type I collagen in keloid fibroblasts in a concentration-dependent manner. Moreover, northern and western blot analysis revealed a decline of the TGF-beta I expression at both mRNA and protein levels after exposure to 5, 10 or 20 mug/ml of tTGFbetaRII. Together, our data suggested that the exogenous tTGFbetaRII can efficiently trap TGF-beta I from access to wild-type receptors and can suppress TGF-beta I triggered signals. Thus it may potentially be clinically applied to scar therapy.
    [Abstract] [Full Text] [Related] [New Search]