These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury: a crucial role of P2X7 receptor-mediated IL-1beta release. Author: Bernardino L, Balosso S, Ravizza T, Marchi N, Ku G, Randle JC, Malva JO, Vezzani A. Journal: J Neurochem; 2008 Jul; 106(1):271-80. PubMed ID: 18384650. Abstract: We investigated the consequences of transient application of specific stimuli mimicking inflammation to hippocampal tissue on microglia activation and neuronal cell vulnerability to a subsequent excitotoxic insult. Two-week-old organotypic hippocampal slice cultures, from 7-day-old C57BL/6 donor mice, were exposed for 3 h to lipopolysaccharide (LPS; 10 ng/mL) followed by 3 h co-incubation with 1 mM ATP, or 100 microM 2'3'-O-(4-benzoyl-benzoyl) adenosine 5'-triphosphate triethylammonium, a selective P2X(7) receptor agonist. These treatments in combination, but not individually, induced a pronounced activation and apoptotic-like death of macrophage antigen-1 (MAC-1)-positive microglia associated with a massive release of interleukin (IL)-1beta exceeding that induced by LPS alone. Antagonists of P2X(7) receptors prevented these effects. Transient pre-exposure of slice cultures to a combination of LPS and P2X(7) receptor agonists, but not either one or the other alone, significantly exacerbated CA3 pyramidal cell loss induced by subsequent 12 h exposure to 8 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazole propinate (AMPA). Potentiation of AMPA toxicity was prevented when IL-1beta production or its receptor signaling were blocked by an inhibitor of interleukin-converting-enzyme or IL-1 receptor antagonist during application of LPS + ATP. The same treatments did not prevent microglia apoptosis-like death. These findings show that transient exposure to specific pro-inflammatory stimuli in brain tissue can prime neuronal susceptibility to a subsequent excitotoxic insult. P2X(7) receptor stimulation, and the consequent IL-1beta release, is mandatory for exacerbation of neuronal loss. These mechanisms may contribute to determine cell death/survival in acute and chronic neurodegenerative conditions associated with inflammatory events.[Abstract] [Full Text] [Related] [New Search]