These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In adrenal glomerulosa cells, angiotensin II inhibits proliferation by interfering with fibronectin-integrin signaling.
    Author: Otis M, Campbell S, Payet MD, Gallo-Payet N.
    Journal: Endocrinology; 2008 Jul; 149(7):3435-45. PubMed ID: 18388189.
    Abstract:
    Angiotensin II (Ang II), through the Ang II type 1 receptor subtype, inhibits basal proliferation of adrenal glomerulosa cells by inducing the disruption of actin stress fiber organization. This effect is observed in cells cultured on plastic or on fibronectin. The aim of the present study was to investigate how Ang II may interfere with extracellular matrix/integrin signaling. In cells treated for 3 d with echistatin (EC) (a snake-venom RGD-containing protein that abolishes fibronectin binding to alpha(5)beta(1) or alpha(v)beta(3) integrins), basal proliferation decreased by 38%, whereas Ang II was unable to abolish basal proliferation. In cells grown on fibronectin, Ang II decreased binding of paxillin to focal adhesions and, similarly to EC, induced a rapid dephosphorylation of paxillin (1 min), followed by an increase after 15 min. Fibronectin enhanced RhoA/B and Rac activation induced by Ang II, an effect abolished by EC. Under basal conditions, paxillin was more readily associated with RhoA/B than with Rac. Stimulation with Ang II induced a transient decrease in RhoA/B-associated paxillin (after 5 min), with a return to basal levels after 10 min, while increasing Rac-associated paxillin. Finally, results reveal that glomerulosa cells are able to synthesize and secrete fibronectin, a process by which cells can stimulate their own proliferative activity when cultured on plastic. Together, these results suggest that Ang II acts at the level of integrin-paxillin complexes to disrupt the well- developed microfilament network, a condition necessary for the inhibition of cell proliferation and initiation of steroidogenesis.
    [Abstract] [Full Text] [Related] [New Search]