These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein kinase A-mediated CREB phosphorylation is an oxidant-induced survival pathway in alveolar type II cells. Author: Barlow CA, Kitiphongspattana K, Siddiqui N, Roe MW, Mossman BT, Lounsbury KM. Journal: Apoptosis; 2008 May; 13(5):681-92. PubMed ID: 18392938. Abstract: Oxidant stress plays a role in the pathogenesis of pulmonary diseases, including fibrotic lung disease and cancer. We previously found that hydrogen peroxide (H2O2) initiates an increase in Ca2+/cAMP-response element binding protein (CREB) phosphorylation in C10 alveolar type II cells that requires activation of extracellular regulated kinases 1/2 (ERK1/2). Here, we investigated the role of crosstalk between protein kinase A (PKA) and epidermal growth factor receptor (EGFR) in oxidant-induced signaling to ERK1/2 and CREB in C10 cells. Application of H2O2 increased nuclear accumulation of PKA, and inhibition of PKA with H89 reduced oxidant-mediated phosphorylation of both CREB and ERK1/2. Single cell measurements of cAMP and redox status, using a FRET-based biosensor and a redox-sensitive GFP, respectively, indicated that H2O2 increases production of cAMP that correlates with redox state. Inhibition of EGFR activity decreased both H2O2-induced CREB phosphorylation and translocation of PKA to the nucleus, suggesting that crosstalk between PKA and EGFR underlies the oxidant-induced CREB response. Furthermore, knockdown of CREB expression using siRNA led to a decrease in bcl-2 and an increase in oxidant-induced apoptosis. Together these data reveal a novel role for crosstalk between PKA, ERK1/2 and CREB that mediates cell survival during oxidant stress.[Abstract] [Full Text] [Related] [New Search]