These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Primary and tertiary structure of the principal human adenylate kinase.
    Author: Von Zabern I, Wittmann-Liebold B, Untucht-Grau R, Schirmer RH, Pai EF.
    Journal: Eur J Biochem; 1976 Sep; 68(1):281-90. PubMed ID: 183954.
    Abstract:
    1. Human adenylate kinase (isoenzyme AK-1-1) from skeletal muscle is a single polypeptide chain of 194 amino-acid residues with an acetylmethionine at the N-terminus and a lysine at the C-terminus. 2. The primary structure of the enzyme was determined: Ac-Met-Glu-Glu-Lys-Leu-Lys-Lys-Thr-Lys-Ile-Ile-Phe-Val-Val-Gly-Gly-Pro-Gly-Ser-Gly-Lys-Gly-Thr-Gln-Cys-Glu-Lys-Ile-Val-Gln-Lys-Tyr-Gly-Tyr-Thr-His-Leu-Ser-Thr-Gly-Asp-Leu-Leu-Arg-Ser-Glu-Val-Ser-Ser-Gly-Ser-Ala-Arg-Gly-Lys-Lys-Leu-Ser-Glu-Ile-Met-Glu-Lys-Gly-Gln-Leu-Val-Pro-Leu-Glu-Thr-Val-Leu-Asp-Met-Leu-Arg-Asp-Ala-Met-Val-Ala-Lys-Val-Asn-Thr-Ser-Lys-Gly-Phe-Leu-Ile-Asp-Gly-Tyr-Pro-Arg-Glu-Val-Gln-Gln-Gly-Glu-Glu-Phe-Glu-Arg-Arg-Ile-Gly-Gln-Pro-Thr-Leu-Leu-Leu-Tyr-Val-Asp-Ala-Gly-Pro-Glu-Thr-Met-Thr-Arg-Arg-Leu-Leu-Lys-Arg-Gly-Glu-Thr-Ser-Gly-Arg-Val-Asp-Asn-Glu-Glu-Thr-Ile-Lys-Lys-Arg-Leu-Glu-Thr-Tyr-Tyr-Lys-Ala-Thr-Glu-Pro-Val-Ile-Ala-Phe-Tyr-Glu-Lys-Arg-Gly-Ile-Val-Arg-Lys-Val-Asn-Ala-Glu-Gly-Ser-Val-Asp-Glu-Val-Phe-Ser-Gln-Val-Cys-Thr-His-Leu-Asp-Ala-Leu-Lys. 3. When the primary structure of the human enzyme was fitted to the electron density map of porcine adenylate kinase, all nine amino acids which are different in the homologous enzymes from pig and man were located on the surface of the molecule. 4. Precession photographs of crystalline human and of crystalline porcine adenylate kinase corroborated the result that the polypeptide chains of the two enzymes are folded in a closely related manner. 5. The structure of human adenylate kinase incorporates the so-called nucleotide-binding domain which is present in a wide variety of proteins in nature. Some implications of this phenomenom for the molecular biology and the molecular pharmacology of man are discussed.
    [Abstract] [Full Text] [Related] [New Search]