These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of synergy of N-(4-hydroxyphenyl)retinamide and ABT-737 in acute lymphoblastic leukemia cell lines: Mcl-1 inactivation.
    Author: Kang MH, Wan Z, Kang YH, Sposto R, Reynolds CP.
    Journal: J Natl Cancer Inst; 2008 Apr 16; 100(8):580-95. PubMed ID: 18398104.
    Abstract:
    BACKGROUND: ABT-737 is a pan-Bcl-2 inhibitor that has a wide range of single-agent activity against acute lymphoblastic leukemia (ALL) cell lines and xenografts. A relationship between expression of myeloid cell leukemia 1 (Mcl-1), an antiapoptotic member of the Bcl-2 family of proteins, and resistance to ABT-737 has been reported for various cancers. The synthetic cytotoxic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) is known to generate reactive oxygen species (ROS), and ROS have been shown to activate c-Jun kinase (JNK), which in turn phosphorylates and inhibits Mcl-1. Thus, we investigated whether 4-HPR-mediated inactivation of Mcl-1 could act synergistically with ABT-737 to promote leukemia cell death. METHODS: Cytotoxicity was determined using the fluorescence-based DIMSCAN assay. Synergy was defined as a combination index (CIN) less than 1. The expression of Bcl-2 family messenger RNAs was measured by real-time reverse transcription-polymerase chain reaction, and caspase activity was measured enzymatically. Changes in Bcl-2 family proteins and release of mitochondrial cytochrome c were detected by immunoblotting. ROS, apoptosis, mitochondrial membrane depolarization, and phospho-JNK were measured by flow cytometry. Gene silencing was by small interfering RNA (siRNA). All statistical tests were two-sided. RESULTS: ABT-737 decreased Mcl-1 protein expression in ABT-737-sensitive ALL cell lines but not in ABT-737-resistant lines. Using the antioxidant ascorbic acid and siRNA-mediated knockdown of JNK, we showed that 4-HPR decreased Mcl-1 via ROS generation (that phosphorylates JNK) in ABT-737-resistant cell lines. Combining ABT-737 with 4-HPR enhanced the mitochondrial apoptotic cascade (percentage of cells with depolarized mitochondrial membrane at 6 hours, ABT-737 vs ABT-737 plus 4-HPR: 24.5% vs 45.5%, difference = 20.1%, 95% CI = 18.9% to 13.9%; P < .001) and caused caspase-dependent, synergistic multilog cytotoxicity in all seven ALL cell lines examined (mean CIN = 0.57, 95% CI = 0.37 to 0.87), with minimal cytotoxicity for normal lymphocytes. CONCLUSIONS: An increase of Mcl-1 protein in response to ABT-737 is one mechanism of ABT-737 resistance that can be overcome by 4-HPR, resulting in synergistic cytotoxicity of ABT-737 combined with 4-HPR in ALL cell lines.
    [Abstract] [Full Text] [Related] [New Search]