These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of air support on droplet characteristics and spray drift. Author: Nuyttens D, Dekeyser D, De Schampheleire M, Baetens K, Sonck B. Journal: Commun Agric Appl Biol Sci; 2007; 72(2):71-9. PubMed ID: 18399426. Abstract: Air assistance on field sprayers creates a forced airstream under the spray boom which blows the spray droplets into the crop. The advantages of this relative new technique are less drift of spray droplets and the possibility to reduce the amount of pesticides and spray Liquid. The purpose of this work was to investigate the effect of air assistance on the characteristics of spray droplets and their driftability. Based on air velocity measurements on an air assisted field sprayer, a system of air assistance was developed in addition to a laser-based measuring set-up for the characterisation of spray droplets. With this set-up, the effect of air support on the droplet characteristics was investigated for different settings of the air assistance. The effect on spray drift was quantified based on field drift measurements. A reducing effect on the total amount of spray drift was demonstrated for the Hardi ISO F 110 02, F 110 03 and LD 110 02 nozzles with drift reduction factors a(d) of, respectively, 2.08, 1.77 and 1.53. The use of air support had no significant effect for the LD 110 03 nozzles on the total amount of spray drift. Comparing droplet size and drift results, it was found that air support has the highest impact on the amount of spray drift for the finer sprays by increasing droplet velocities. The effect of air support on droplet sizes is rather limited.[Abstract] [Full Text] [Related] [New Search]