These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The hippocamposeptal pathway generates rhythmic firing of GABAergic neurons in the medial septum and diagonal bands: an investigation using a complete septohippocampal preparation in vitro. Author: Manseau F, Goutagny R, Danik M, Williams S. Journal: J Neurosci; 2008 Apr 09; 28(15):4096-107. PubMed ID: 18400909. Abstract: The medial septum diagonal band area (MS/DB) projects to the hippocampus through the fornix/fimbria pathway and is implicated in generating hippocampal theta oscillations. The hippocampus also projects back to the MS/DB, but very little is known functionally about this input. Here, we investigated the physiological role of hippocamposeptal feedback to the MS/DB in a complete in vitro septohippocampal preparation containing the intact interconnecting fornix/fimbria pathway. We demonstrated that carbachol-induced rhythmic theta-like hippocampal oscillations recorded extracellularly were synchronized with powerful rhythmic IPSPs in whole-cell recorded MS/DB neurons. Interestingly, we found that these IPSPs evoked rebound spiking in GABAergic MS/DB neurons. In contrast, putative cholinergic and glutamatergic MS/DB neurons responded only weakly with rebound spiking and, as a result, were mostly silent during theta-like oscillations. We next determined the mechanism underlying the rebound spiking that followed the IPSPs in MS/DB GABAergic neurons using phasic electrical stimulation of the fornix/fimbria pathway. We demonstrate that the increased rebound spiking was attributable to the activation of I(h) current, because it was significantly reduced by low concentrations of the I(h) antagonist ZD7288 [4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyridinium chloride]. Together, these results suggest that rhythmical activity in hippocampus is transferred to the MS/DB and can preferentially phase the spiking of GABAergic MS/DB neurons because of their significant expression of I(h) currents. Our data demonstrate that hippocamposeptal inhibition facilitates theta rhythmic discharges in MS/DB GABAergic neurons while favoring the inhibition of most ACh and glutamate neurons.[Abstract] [Full Text] [Related] [New Search]