These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban.
    Author: Wang H, Kohr MJ, Traynham CJ, Wheeler DG, Janssen PM, Ziolo MT.
    Journal: Am J Physiol Cell Physiol; 2008 Jun; 294(6):C1566-75. PubMed ID: 18400986.
    Abstract:
    Studies have shown that neuronal nitric oxide synthase (nNOS, NOS1) knockout mice (NOS1-/-) have increased or decreased contractility, but consistently have found a slowed rate of intracellular Ca2+ ([Ca2+]i) decline and relengthening. Contraction and [Ca2+]i decline are determined by many factors, one of which is phospholamban (PLB). The purpose of this study is to determine the involvement of PLB in the NOS1-mediated effects. Force-frequency experiments were performed in trabeculae isolated from NOS1-/- and wild-type (WT) mice. We also simultaneously measured Ca2+ transients (Fluo-4) and cell shortening (edge detection) in myocytes isolated from WT, NOS1-/-, and PLB-/- mice. NOS1-/- trabeculae had a blunted force-frequency response and prolonged relaxation. We observed similar effects in myocytes with NOS1 knockout or specific NOS1 inhibition with S-methyl-l-thiocitrulline (SMLT) in WT myocytes (i.e., decreased Ca2+ transient and cell shortening amplitudes and prolonged decline of [Ca2+]i). Alternatively, NOS1 inhibition with SMLT in PLB-/- myocytes had no effect. Acute inhibition of NOS1 with SMLT in WT myocytes also decreased basal PLB serine16 phosphorylation. Furthermore, there was a decreased SR Ca2+ load with NOS1 knockout or inhibition, which is consistent with the negative contractile effects. Perfusion with FeTPPS (peroxynitrite decomposition catalyst) mimicked the effects of NOS1 knockout or inhibition. beta-Adrenergic stimulation restored the slowed [Ca2+]i decline in NOS1-/- myocytes, but a blunted contraction remained, suggesting additional protein target(s). In summary, NOS1 inhibition or knockout leads to decreased contraction and slowed [Ca2+]i decline, and this effect is absent in PLB-/- myocytes. Thus NOS1 signaling modulates PLB serine16 phosphorylation, in part, via peroxynitrite.
    [Abstract] [Full Text] [Related] [New Search]