These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetics of hydrogen peroxide elimination by astrocytes and C6 glioma cells analysis based on a mathematical model. Author: Makino N, Mise T, Sagara J. Journal: Biochim Biophys Acta; 2008 Jun; 1780(6):927-36. PubMed ID: 18402782. Abstract: Oxidative stress is implicated in a variety of disorders including neurodegenerative diseases, and H(2)O(2) is important in the generation of reactive oxygen and oxidative stress. In this study, we have examined the rate of extracellular H(2)O(2) elimination and relevant enzyme activities in cultured astrocytes and C6 glioma cells and have analyzed the results based on a mathematical model. As compared with other types of cultured cells, astrocytes showed higher activity of glutathione peroxidase (GPx) but lower activities for GSH recycling. C6 cells showed relatively low GPx activity, and treatment of C6 cells with dibutyryl-cAMP, which induces astrocytic differentiation, increased catalase activity and H(2)O(2) permeation rate but exerted little effect on other enzyme activities. A mathematical model [N. Makino, K. Sasaki, N. Hashida, Y. Sakakura, A metabolic model describing the H(2)O(2) elimination by mammalian cells including H(2)O(2) permeation through cytoplasmic and peroxisomal membranes: comparison with experimental data, Biochim. Biophys. Acta 1673 (2004) 149-159.], which includes relevant enzymes and H(2)O(2) permeation through membranes, was found to be fitted well to the H(2)O(2) concentration dependences of removal reaction with the permeation rate constants as variable parameters. As compared with PC12 cells as a culture model for neuron, H(2)O(2) removal activity of astrocytes was considerably higher at physiological H(2)O(2) concentrations. The details of the mathematical model are presented in Appendix.[Abstract] [Full Text] [Related] [New Search]