These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of the nitric oxide-cyclic GMP-protein kinase G-K+ channel pathway in the antihyperalgesic effects of bovine lactoferrin in a model of neuropathic pain. Author: Wang J, Zhang LC, Lv YW, Ji Y, Yan XJ, Xue JP. Journal: Brain Res; 2008 May 13; 1209():1-7. PubMed ID: 18406400. Abstract: The possible involvement of the nitric oxide (NO)-cyclic GMP (cGMP)-protein kinase G (PKG) pathway on bovine lactoferrin (BLF)-induced spinal antihyperalgesic activity was elucidated in sciatic nerve injured rats. Intrathecal BLF reduced thermal hyperalgesia in a dose-dependent manner. Pretreatment with NG-L-nitro-arginine methyl ester (L-NAME, non-specific inhibitor of NO synthase), 7-nitroindazole (7-NI, neuronal NO synthase inhibitor), 1H-[1,2,4]-oxadiazolo [4,3-a] quinoxalin-1-one (ODQ, guanylyl-cyclase inhibitor), (9S, 10R, 12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2, 9-dimethyl-1-oxo-9, 12-epoxy-1H-diindolo-[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester (KT-5823, specific PKG inhibitor) or glybenclamide (ATP-sensitive K+ channel blocker), but not NG-D-nitro-arginine methyl ester (D-NAME, an inactive enantiomer of l-NAME), d-Phe-Cys-Tyr-d-Trp-Orn-Thr-NH2 (CTOP, selective mu-opioid receptor antagonist) or naloxone (nonselective opioid receptor antagonist) prevented BLF-induced antihyperalgesia. Data suggest that BLF-induced spinal antihyperalgesia could be due to activation of the NO-cGMP-PKG-K+ channel pathway and it is not mediated by mu-opioid receptor in a model of neuropathic pain.[Abstract] [Full Text] [Related] [New Search]