These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct injection LC/ESI-MS horse urine analysis for the quantification and identification of threshold substances for doping control. I. Determination of hydrocortisone.
    Author: Vonaparti A, Lyris E, Panderi I, Koupparis M, Georgakopoulos C.
    Journal: J Mass Spectrom; 2008 Sep; 43(9):1255-64. PubMed ID: 18407581.
    Abstract:
    Two simple and rapid LC/MS methods with direct injection analysis were developed and validated for the quantification and identification of hydrocortisone in equine urine using the same sample preparation but different mass spectrometric systems: ion trap mass spectrometry (IT-MS) and time-of-flight mass spectrometry (TOF-MS). The main advantage of the proposed methodology is the minimal sample preparation procedure, as particle-free diluted urine samples were directly injected into both LC/MS systems. Desonide was used as internal standard (IS). The linear range was 0.25-2.5 microg ml(-1) for both methods. Matrix effects were evaluated by preparing and analyzing calibration curves in water solutions and different horse urine samples. A great variation of the signal both for hydrocortisone and the internal standard was observed in different matrices. To overcome matrix effects, the unavailability of blank matrix and the excessive cost of the isotopically labeled internal standard, standard additions calibration method was applied. This work is an exploration of the performance of the standard additions approach in a method where neither nonisotopic internal standards nor extensive sample preparation is utilized and no blank matrix is available. The relative standard deviations of intra and interday analysis of hydrocortisone in horse urine were lower than 10.2 and 5.4%, respectively, for the LC/IT-MS method and lower than 8.4 and 4.4%, respectively, for the LC/TOF-MS method. Accuracy (bias percentage) was less than 9.7% for both methods.
    [Abstract] [Full Text] [Related] [New Search]