These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spastin oligomerizes into a hexamer and the mutant spastin (E442Q) redistribute the wild-type spastin into filamentous microtubule. Author: Pantakani DV, Swapna LS, Srinivasan N, Mannan AU. Journal: J Neurochem; 2008 Jul; 106(2):613-24. PubMed ID: 18410514. Abstract: Spastin, a member of the ATPases associated with various cellular activities (AAA) family of proteins, is the most frequently mutated in hereditary spastic paraplegia. The defining feature of the AAA proteins is a structurally conserved AAA domain which assembles into an oligomer. By chemical cross-linking and gel filtration chromatography, we show that spastin oligomerizes into a hexamer. Furthermore, to gain a comprehensive overview of the oligomeric structure of spastin, we generated a structural model of the AAA domain of spastin using template structure of VPS4B and p97/VCP. The generated model of spastin provided us with a framework to classify the identified missense mutations in the AAA domain from hereditary spastic paraplegia patients into different structural/functional groups. Finally, through co-localization studies in mammalian cells, we show that E442Q mutant spastin acts in a dominant negative fashion and causes redistribution of both wild-type spastin monomer and spastin interacting protein, RTN1 into filamentous microtubule bundles.[Abstract] [Full Text] [Related] [New Search]