These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anteroventrally localized activity in the optic vesicle plays a crucial role in the optic development. Author: Hirashima M, Kobayashi T, Uchikawa M, Kondoh H, Araki M. Journal: Dev Biol; 2008 May 15; 317(2):620-31. PubMed ID: 18417108. Abstract: The vertebrate eye develops from the optic vesicle (OV), a laterally protrusive structure of the forebrain, by a coordinated interaction with surrounding tissues. The OV then invaginates to form an optic cup, and the lens placode develops to the lens vesicle at the same time. These aspects in the early stage characterize vertebrate eye formation and are controlled by appropriate dorsal-ventral coordination. In the present study, we performed surgical manipulation in the chick OV to remove either the dorsal or ventral half and examined the development of the remaining OV. The results show that the dorsal and ventral halves of the OV have a clearly different developmental pattern. When the dorsal half was removed, the remaining ventral OV developed into an entire eye, while the dorsal OV developed to a pigmented vesicle consisting of retinal pigmented epithelium alone. These results indicate that the ventral part of the OV retains the potency to develop the entire eye structure and plays an essential role in proper eye development. In subsequent manipulations of early chick embryos, it was found that only the anterior ventral quadrant of the OV has the potential to develop the entire eye and that no other part of the OV has a similar activity. Fgf8 expression was localized in this portion and no Fgf8 expression was observed within the OV when the ventral OV was removed. These results suggest that the anterior ventral portion of the OV plays a crucial role in the proper development of the eye, possibly generating the dorsal-ventral gradients of signal proteins within the eye primordium.[Abstract] [Full Text] [Related] [New Search]