These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The M1P1 loop of TASK3 K2P channels apposes the selectivity filter and influences channel function.
    Author: Clarke CE, Veale EL, Wyse K, Vandenberg JI, Mathie A.
    Journal: J Biol Chem; 2008 Jun 20; 283(25):16985-92. PubMed ID: 18417474.
    Abstract:
    Channels of the two-pore domain potassium (K2P) family contain two pore domains rather than one and an unusually long pre-pore extracellular linker called the M1P1 loop. The TASK (TASK1, TASK3, and TASK5) subfamily of K2P channels is regulated by a number of different pharmacological and physiological mediators. At pH 7.4 TASK3 channels are selectively blocked by zinc in a manner that is both pH(o)- and [K](o)(-)dependent. Mutation of both the Glu-70 residue in the M1P1 loop and the His-98 residue in the pore region abolished block, suggesting the two residues may contribute to a zinc binding site. Mutation of one Glu-70 residue and one His-98 residue to cysteine in TASK3 fixed concatamer channels gave currents that were enhanced by dithiothreitol and then potently blocked by cadmium, suggesting that spontaneous disulfide bridges could be formed between these two residues. Swapping the M1P1 loops of TASK1 and TASK3 channels showed that the M1P1 loop is also involved in channel regulation by pH. Therefore, the TASK3 M1P1 loop lies close to the pore, regulating TASK3 channel activity.
    [Abstract] [Full Text] [Related] [New Search]