These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet.
    Author: Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM.
    Journal: J Biol Chem; 2008 Jun 27; 283(26):18365-76. PubMed ID: 18420580.
    Abstract:
    The K cell is a specific sub-type of enteroendocrine cell located in the proximal small intestine that produces glucose-dependent insulinotropic polypeptide (GIP), xenin, and potentially other unknown hormones. Because GIP promotes weight gain and insulin resistance, reducing hormone release from K cells could lead to weight loss and increased insulin sensitivity. However, the consequences of coordinately reducing circulating levels of all K cell-derived hormones are unknown. To reduce the number of functioning K cells, regulatory elements from the rat GIP promoter/gene were used to express an attenuated diphtheria toxin A chain in transgenic mice. K cell number, GIP transcripts, and plasma GIP levels were profoundly reduced in the GIP/DT transgenic mice. Other enteroendocrine cell types were not ablated. Food intake, body weight, and blood glucose levels in response to insulin or intraperitoneal glucose were similar in control and GIP/DT mice fed standard chow. In contrast to single or double incretin receptor knock-out mice, the incretin response was absent in GIP/DT animals suggesting K cells produce GIP plus an additional incretin hormone. Following high fat feeding for 21-35 weeks, the incretin response was partially restored in GIP/DT mice. Transgenic versus wild-type mice demonstrated significantly reduced body weight (25%), plasma leptin levels (77%), and daily food intake (16%) plus enhanced energy expenditure (10%) and insulin sensitivity. Regardless of diet, long term glucose homeostasis was not grossly perturbed in the transgenic animals. In conclusion, studies using GIP/DT mice demonstrate an important role for K cells in the regulation of body weight and insulin sensitivity.
    [Abstract] [Full Text] [Related] [New Search]