These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, beta-glucosidase, and hemicellulase preparations.
    Author: Prior BA, Day DF.
    Journal: Appl Biochem Biotechnol; 2008 Mar; 146(1-3):151-64. PubMed ID: 18421595.
    Abstract:
    Sugar cane bagasse consists of hemicellulose (24%) and cellulose (38%), and bioconversion of both fractions to ethanol should be considered for a viable process. We have evaluated the hydrolysis of pretreated bagasse with combinations of cellulase, beta-glucosidase, and hemicellulase. Ground bagasse was pretreated either by the AFEX process (2NH(3): 1 biomass, 100 degrees C, 30 min) or with NH(4)OH (0.5 g NH(4)OH of a 28% [v/v] per gram dry biomass; 160 degrees C, 60 min), and composition analysis showed that the glucan and xylan fractions remained largely intact. The enzyme activities of four commercial xylanase preparations and supernatants of four laboratory-grown fungi were determined and evaluated for their ability to boost xylan hydrolysis when added to cellulase and beta-glucosidase (10 filter paper units [FPU]: 20 cellobiase units [CBU]/g glucan). At 1% glucan loading, the commercial enzyme preparations (added at 10% or 50% levels of total protein in the enzyme preparations) boosted xylan and glucan hydrolysis in both pretreated bagasse samples. Xylanase addition at 10% protein level also improved hydrolysis of xylan and glucan fractions up to 10% glucan loading (28% solids loading). Significant xylanase activity in enzyme cocktails appears to be required for improving hydrolysis of both glucan and xylan fractions of ammonia pretreated sugar cane bagasse.
    [Abstract] [Full Text] [Related] [New Search]