These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrochemical immunosensor with aptamer-based enzymatic amplification.
    Author: Feng K, Kang Y, Zhao JJ, Liu YL, Jiang JH, Shen GL, Yu RQ.
    Journal: Anal Biochem; 2008 Jul 01; 378(1):38-42. PubMed ID: 18423388.
    Abstract:
    An electrochemical immunosensor is reported by using aptamer-based enzymatic amplification with immunoglobulin E (IgE) as the model analyte. In this method, the IgE antibody is covalently immobilized as the capture probe on the gold electrode via a self-assembled monolayer of cysteamine. After the target is captured, the biotinylated anti-IgE aptamer is used as the detection probe. The specific interaction of streptavidin-conjugated alkaline phosphatase to the surface-bound biotinylated detection probe mediates a catalytic reaction of ascorbic acid 2-phosphate substrate to produce a reducing agent ascorbic acid. Then silver ions in the solution can be reduced, leading to the deposition of metallic silver on the electrode surface. The amount of deposited silver, which is determined by the amount of IgE target bound on the electrode surface, can be quantified using the stripping voltammetry. The results obtained demonstrated that the electrochemical immunosensor possesses high specificity and a wide dynamic range with a low detection limit that possibly arises from the combination of the highly specific aptamer and the highly sensitive stripping determination of enzymatically deposited silver.
    [Abstract] [Full Text] [Related] [New Search]