These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of NADPH oxidase-related oxidative stress-triggered signaling by honokiol suppresses high glucose-induced human endothelial cell apoptosis.
    Author: Sheu ML, Chiang CK, Tsai KS, Ho FM, Weng TI, Wu HY, Liu SH.
    Journal: Free Radic Biol Med; 2008 Jun 15; 44(12):2043-50. PubMed ID: 18423412.
    Abstract:
    Angiopathy is a major complication of diabetes. Abnormally high blood glucose is a crucial risk factor for endothelial cell damage. Nuclear factor-kappaB (NF-kappaB) has been demonstrated as a mediated signaling in hyperglycemia or oxidative stress-triggered apoptosis of endothelial cells. Here we explored the efficacy of honokiol, a small molecular weight natural product, on NADPH oxidase-related oxidative stress-mediated NF-kappaB-regulated signaling and apoptosis in human umbilical vein endothelial cells (HUVECs) under hyperglycemic conditions. The methods of morphological Hoechst staining and annexin V/propidium iodide staining were used to detect apoptosis. Submicromolar concentrations of honokiol suppressed the increases of NADPH oxidase activity, Rac-1 phosphorylation, p22(phox) protein expression, and reactive oxygen species production in high glucose (HG)-stimulated HUVECs. The degradation of IkappaBalpha and increase of NF-kappaB activity were inhibited by honokiol in HG-treated HUVECs. Moreover, honokiol (0.125-1 microM) also suppressed HG-induced cyclooxygenase (COX)-2 upregulation and prostaglandin E(2) production in HUVECs. Honokiol could reduce increased caspase-3 activity and the subsequent apoptosis and cell death triggered by HG. These results imply that inhibition of NADPH oxidase-related oxidative stress by honokiol suppresses the HG-induced NF-kappaB-regulated COX-2 upregulation, apoptosis, and cell death in HUVECs, which has the potential to be developed as a therapeutic agent to prevent hyperglycemia-induced endothelial damage.
    [Abstract] [Full Text] [Related] [New Search]