These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation.
    Author: Park YK, Ahn DR, Oh M, Lee T, Yang EG, Son M, Park H.
    Journal: Mol Pharmacol; 2008 Jul; 74(1):236-45. PubMed ID: 18426857.
    Abstract:
    We have confirmed that the NO donor (+/-)-S-nitroso-N-acetylpenicillamine (SNAP) stabilizes the transactive form of hypoxia-inducible factor-1alpha (HIF-1alpha), leading to the induction of HIF-1alpha target genes such as vascular endothelial growth factor and carbonic anhydrase 9. Activation of HIF-1alpha should require inhibition of the dual system that keeps it inactive. One is ubiquitination, which is triggered by hydroxylation of HIF-1alpha-proline and the subsequent binding of E3 ubiquitin ligase, the von Hippel Lindau (VHL) protein. The other is hydroxylation of HIF-1alpha-asparagine, which reduces the affinity of HIF-1alpha for its coactivator, cAMP responsive element binding protein/p300. We examined the effects of the NO donor SNAP on proline and asparagine hydroxylation of HIF-1alpha peptides by measuring the activities of the corresponding enzymes, HIF-1alpha-specific proline hydroxylase 2 (PHD2) and the HIF-1alpha-specific asparagine hydroxylase, designated factor inhibiting HIF-1alpha (FIH-1), respectively. We found that the SNAP did not prevent PHD2 from hydroxylating the proline of HIF-1alpha. Instead, it blocked the interaction between VHL and the proline-hydroxylated HIF-1alpha, but only when the reducing agents Fe(II) and vitamin C were limiting. The fact that the absence of cysteine 520 of HIF-1alpha abolishes its responsiveness to SNAP suggests that this residue mediates the inhibition by SNAP of the interaction between VHL and HIF-1alpha, presumably by S-nitrosylation of HIF-1alpha. Un-like PHD2, asparagine hydroxylation by FIH-1 was directly inhibited by SNAP, but again only when reducing agents were limiting. Substitution of cysteine 800 of HIF-1alpha with alanine failed to reverse the inhibitory effects of SNAP on asparagine hydroxylation, implying that FIH-1, not its substrate HIF-1alpha, is inhibited by SNAP.
    [Abstract] [Full Text] [Related] [New Search]