These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Relationship of plasma sex steroid concentrations in female fathead minnows to reproductive success and population status.
    Author: Ankley GT, Miller DH, Jensen KM, Villeneuve DL, Martinović D.
    Journal: Aquat Toxicol; 2008 Jun 02; 88(1):69-74. PubMed ID: 18433896.
    Abstract:
    Concentration and/or production of sex steroids such as 17beta-estradiol (E2) and testosterone (T) in fish have commonly been measured in field studies concerned with endocrine-active chemicals. There is a reasonable mechanistic basis for using E2 or T as biomarkers, as chemicals can alter steroid production through both direct and indirect effects on the hypothalamic-pituitary-gonadal (HPG) axis. There is uncertainty, however, as to what changes in steroid status may mean relative to apical endpoints, such as reproduction, that directly affect population status. In this study, we analyzed data from fathead minnow (Pimephales promelas) reproduction studies in which decreases in fecundity were associated with depressed steroid production as a result of chemical exposure. Although the chemicals acted on the HPG axis through different mechanisms, reproductive effects appeared to be expressed through a common pathway, depression of vitellogenin production in females. Plasma concentrations of E2 or T in the females were significantly, positively correlated with fecundity. Linear regression models describing the relationship between E2 or T concentrations and relative fecundity were linked to a population model to predict population trajectories of fathead minnows exposed to chemicals that inhibit steroid production. For example, a population existing at carrying capacity and exposed to a chemical stressor(s) that causes a 50% decrease in E2 production was predicted to exhibit a 92% decrease in population size over a 5-year period. Results of our analysis illustrate a conceptual framework whereby a commonly measured biomarker, sex steroid status, could be linked to individual- and population-level effects in fish.
    [Abstract] [Full Text] [Related] [New Search]