These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer. Author: Chen JW, Liu XP, Feng KJ, Liang Y, Jiang JH, Shen GL, Yu RQ. Journal: Biosens Bioelectron; 2008 Sep 15; 24(1):66-71. PubMed ID: 18436440. Abstract: In the present study, we report a novel sensitive method for the detection of adenosine using surface-enhanced Raman scattering (SERS) sensing platform based on a structure-switching aptamer. First, Ag-clad Au colloids film on a polished gold disc is prepared as enhanced substrate and modified with thiolated capture DNA. The formation of an aptamer/DNA duplex of expanded anti-adenosine aptamer and tetramethylrhodamine-labeled DNA (denoted TMR-DNA) is then developed, in which TMR-DNA could also hybridize completely with capture DNA. The introduction of adenosine thus triggers structure switching of the aptamer from aptamer/DNA duplex to aptamer/target complex. As a result, the released TMR-DNA is captured onto the SERS substrate, resulting in an increase of SERS signal. Under optimized assay conditions, a wide linear dynamic range (2.0 x 10(-8)M to 2 x 10(-6)M) was reached with low detection limit (1.0 x 10(-8)M). Moreover, high selectivity, stability and facile regeneration are achieved. The successful test demonstrates the feasibility of the strategy for adenosine assay.[Abstract] [Full Text] [Related] [New Search]