These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Swedish amyloid precursor protein mutation increases cell cycle-related proteins in vitro and in vivo.
    Author: Ahn KW, Joo Y, Choi Y, Kim M, Lee SH, Cha SH, Suh YH, Kim HS.
    Journal: J Neurosci Res; 2008 Aug 15; 86(11):2476-87. PubMed ID: 18438935.
    Abstract:
    Reactivation of the cell cycle, including DNA replication, might play a major role in Alzheimer's disease. In this study, we report that the expressions of Swedish double mutation of amyloid precursor protein (Swe-APP) or of the APP intracellular domain (AICD) into nerve growth factor (NGF)-differentiated PC12 cells or rat primary cortical neurons increased mRNA and protein levels of cyclin D1 and cyclin B1. Treatment with lithium chloride (a glycogen synthase kinase-3beta inhibitor) down-regulated cyclin B1 induced by Swe-APP expression but up-regulated cyclin D1 expression induced by Swe-APP, suggesting that glycogen synthase kinase-3beta activity is involved in these expression changes of cyclins D1 and B1. Swe-APP, which is a prevailing cause of familial Alzheimer's disease, is well known to increase amyloid beta peptide production both in vitro and in vivo, but the underlying molecular means whereby it leads to the pathogenesis of AD remains unknown. The finding that cyclin D1 and B1 expressions were up-regulated by Swe-APP in in vitro cultured cells was substantiated in the brain tissues of Tg2576 mice, which harbor the Swe-APP mutation. These results suggest that some disturbances in cell cycle regulation may be involved in Swe-APP or AICD-induced neurodegeneration and that these contribute to the pathogenesis of AD.
    [Abstract] [Full Text] [Related] [New Search]