These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of the neuronal calcium sensor visinin-like protein-1 in the rat hippocampus.
    Author: Zhao C, Braunewell KH.
    Journal: Neuroscience; 2008 Jun 02; 153(4):1202-12. PubMed ID: 18440708.
    Abstract:
    Visinin-like protein-1 (VILIP-1) belongs to the neuronal calcium sensor (NCS) family of EF-hand Ca(2+)-binding proteins which are involved in a variety of Ca(2+)-dependent signal transduction processes in neurons. VILIP-1 has been implicated in the pathology of CNS disorders including Alzheimer's disease and schizophrenia, but its expression has also been found to be regulated following induction of hippocampal synaptic plasticity underlying learning and memory processes. VILIP-1 is strongly expressed in different populations of principal and non-principal neurons in the rat hippocampus. VILIP-1-containing interneurons are morphologically and neurochemically heterogeneous. On the basis of co-localizing markers, VILIP-1 is rarely present in perisomatic inhibitory parvalbumin containing cells. However, VILIP-1 is frequently expressed in mid-proximal dendritic inhibitory cells characterized by calbindin immunoreactivity, and most strongly co-expressed in calretinin-positive disinhibitory interneurons. Partial co-localization of the metabotropic glutamate receptor mGluR1alpha with VILIP-1 was often found in interneurons located in the stratum oriens of the hippocampal CA1 region and in hilar interneurons. Partial co-localization of alpha4beta2 nicotinic acetylcholine receptor with VILIP-1 was seen in stratum oriens interneurons and particularly at the border of the hilus in the dentate gyrus, where VILIP-1 also strongly co-localized with calretinin. We speculate that depending on the regulation of the expression of VILIP-1 in hippocampal pyramidal cells or defined types of interneurons, it may have different effects on hippocampal synaptic plasticity and network activity in health and disease.
    [Abstract] [Full Text] [Related] [New Search]