These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NMR and X-ray structural characterization of a cisplatin analogue able to slow down the Pt-N7 rotation of a coordinated guanine base by a billion-fold times: 2,2'-bipiperidine(dimethylmalonato)platinum(II) complex. Author: Intini FP, Cini R, Tamasi G, Hursthouse MB, Natile G. Journal: Inorg Chem; 2008 Jun 02; 47(11):4909-17. PubMed ID: 18447326. Abstract: The synthesis and the NMR and X-ray structural characterization of a cisplatin analogue designed to reduce the Pt-N7 rotation of a coordinated guanine base by a billion times are reported. The [Pt(dmm){(+/-)-bip}] (dmm=dimethylmalonato; bip=2,2'-bipiperidine) complex crystallizes in the C2/m space group, which contemplates a mirror plane bisecting the bip and dmm ligands. Because the bip moiety (R, R or S, S configuration at the 2,2'-carbon atoms) does not have planes of symmetry, the requirements of the crystal symmetry are satisfied by a statistical disorder made of bip molecules of R, R or S, S configurations alternating at the same crystallographic site. Such an unexpected arrangement has been permitted by a "quasi planarity" of the bip ligand [maximum deviation from the mean plane through the C and N atoms of 0.2927(9) A], which allows bip molecules of different chiralities to fit in the same space. The bip array of heavy atoms is overlaid, from both sides, by a layer of "quasi axial" (C)H and (N)H atoms (six per side). Those on one side are hydrogen-bonded to the dmm oxygen atoms of another complex molecule joined in a pair. The distance between the average platinum coordination planes is as short as 3.498(1) A, comparable to those found in crystals of the [PtCl 2(bipy)] complex (bipy=2,2'-bipyridine) and of graphite, in which, however, all atoms of each unit are rigorously coplanar and there are no out-of-plane hydrogen atoms. The NMR data show a net chemical shift separation between geminal methylene protons, with the "quasi axial" protons being always at higher field with respect to the "quasi equatorial" ones. This is in accordance with a rigid bip ligand frame and the inability of the bip methylene protons adjacent to the coordinated nitrogen to rotate away from a cis-G base (G=guanine) during G rotation around the Pt-N7 bond.[Abstract] [Full Text] [Related] [New Search]