These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Supramolecular organization of the yeast F1Fo-ATP synthase.
    Author: Thomas D, Bron P, Weimann T, Dautant A, Giraud MF, Paumard P, Salin B, Cavalier A, Velours J, Brèthes D.
    Journal: Biol Cell; 2008 Oct; 100(10):591-601. PubMed ID: 18447829.
    Abstract:
    BACKGROUND INFORMATION: The yeast mitochondrial F(1)F(o)-ATP synthase is a large complex of 600 kDa that uses the proton electrochemical gradient generated by the respiratory chain to catalyse ATP synthesis from ADP and P(i). For a large range of organisms, it has been shown that mitochondrial ATP synthase adopts oligomeric structures. Moreover, several studies have suggested that a link exists between ATP synthase and mitochondrial morphology. RESULTS AND DISCUSSION: In order to understand the link between ATP synthase oligomerization and mitochondrial morphology, more information is needed on the supramolecular organization of this enzyme within the inner mitochondrial membrane. We have conducted an electron microscopy study on wild-type yeast mitochondria at different levels of organization from spheroplast to isolated ATP synthase complex. Using electron tomography, freeze-fracture, negative staining and image processing, we show that cristae form a network of lamellae, on which ATP synthase dimers assemble in linear and regular arrays of oligomers. CONCLUSIONS: Our results shed new light on the supramolecular organization of the F(1)F(o)-ATP synthase and its potential role in mitochondrial morphology.
    [Abstract] [Full Text] [Related] [New Search]