These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pulses of extracellular K+ produce two cytosolic Ca2+ transients that display different temperature dependence and carbonyl cyanide m-chlorophenyl sensitivity in SH-SY5Y cells.
    Author: Montoya G JV, Sutachan JJ, Corrales A, Xu F, Blanck TJ, Recio-Pinto E.
    Journal: Brain Res; 2008 Jun 05; 1213():12-26. PubMed ID: 18448083.
    Abstract:
    In SH-SY5Y cells we have shown that stimulation with high extracellular K+ ([K+]e) evokes a transient increase in cytoplasmic Ca2+ ([Ca2+]cyt) (K+on) that is triggered by the opening of voltage-dependent Ca2+ channels and followed by Ca2+ -induced Ca2+ release from the endoplasmic reticulum (Xu, F., Zhang, J., Recio-Pinto, E. and Blanck, T.J., Halothane and isoflurane augment depolarization-induced cytosolic CA2+ transients and attenuate carbachol-stimulated CA2+ transients, Anesthesiology, 92 (2000) 1746-56). The removal of high-[K+]e results in a second transient increase in [Ca2+]cyt (K+off) that is independent of extracellular Ca2+ (Corrales, A., Montoya, G.J., Sutachan, J.J., Cornillez-Ty, G., Garavito-Aguilar, Z., Xu, F., Blanck, T.J. and Recio-Pinto, E., Transient increases in extracellular K+ produce two pharmacological distinct cytosolic Ca2+ transients, Brain Res., 1031 (2005) 174-184). In this study we further characterize the properties of K+off. We found that K+off was detectable at near physiological temperatures (34-36 degrees C) but, depending on the level of [K+]e, it was undetectable or highly diminished at room temperature. In contrast, K+on was increased by lowering the temperature. Extracellular Na+ -replacement with K+ did not affect K+off, indicating that K+off was not generated by osmolarity changes. Replacement of extracellular Na+ with choline+ did not affect K+off, indicating that K+off did not result from activity changes of the plasma membrane Na+/Ca2+ exchanger. Caffeine decreased K+on but not K+off. CCCP (carbonyl cyanide m-chlorophenyl), a protonophore uncoupler that decreases mitochondrial Ca2+ uptake, decreased K+on but not K+off. CGP37157, an inhibitor of the mitochondria Na+/Ca2+ exchanger, decreased K+off when added alone but not when added simultaneously with CCCP. Clonazepam had similar effects as CGP37157. These findings indicate that the generation of K+off is strongly temperature-dependent and its pharmacology is distinct from the [Ca2+]cyt changes observed previously at room temperature.
    [Abstract] [Full Text] [Related] [New Search]